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Abstract 

In the nonequivalent groups with anchor test (NEAT) design, there are several ways to use the 

information provided by the anchor in the equating process. One of the NEAT-design equating 

methods is the linear observed-score Levine method (Kolen & Brennan, 2004). It is based on a 

classical test theory model of the true scores on the test forms to be equated and on the anchor 

test (Levine, 1955). The Levine linear method does not yet have an equipercentile analogue, and 

no version of kernel equating (KE), introduced in von Davier, Holland, and Thayer (2004b), 

approximates the Levine linear method. Nevertheless, the Levine observed-score equating 

method is often computed in practical applications for comparison purposes because it is 

sometimes more accurate than other linear equating methods (Petersen, Marco, & Stewart, 

1982). In situations when a linear equating function is not satisfactory, an equipercentile version 

of the Levine function may be desirable. This paper proposes a general method for constructing 

hybrid equating functions that combine linear and nonlinear equating functions in a systematic 

way that preserves the symmetry required of equating functions (Dorans & Holland, 2000). The 

general method is then applied to combine the linear Levine observed-score equating function 

with a nonlinear equipercentile equating function derived using the poststratification equating 

(PSE) assumptions within the KE framework. An easily computed approximation to the resulting 

PSE-Levine equipercentile equating function is illustrated on data from a special study and 

compared to the results from the traditional equating functions. The special data set includes a 

criterion equating function, and the closeness of the PSE-Levine function to this criterion 

indicates that such hybrid equating functions may be useful in practice. 

Key words: Linear equating, hybrid equating functions, kernel equating (KE), nonequivalent 

groups with anchor test (NEAT) design, anchor test design, common items, poststratification  
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Introduction 

This paper presents a way to create an equipercentile version of the Levine linear 

observed-score equating method. It uses ideas from von Davier, Holland, and Thayer (2004b) 

and exploits the general structure of the kernel equating (KE) framework for test equating. We 

present a general theoretical proposal and some empirical results that are derived under stronger 

assumptions than the general theory. With modest changes, available software can be used to 

implement the more general theoretical approach. This paper focuses on observed-score equating 

methods and does not address any of the item response theory methods for equating tests. See, 

for example, Kolen and Brennan (2004) for details on item response theory equating methods. 

In the nonequivalent groups with anchor test (NEAT) design (also called the common 

item or anchor test design), two test scores are equated, X and Y, which are taken, respectively, 

by two samples of examinees each drawn from a different population, P or Q. When the equating 

function goes from X scores to Y scores, X is often called the score on the “new” form and Y the 

score on the “old” form. In the NEAT design, it is not assumed that P and Q are similar in any 

way. To deal with this, there is also the score on a set of common items, A, that is available for 

the examinees in both samples. This data collection arrangement is shown in the design table 

(von Davier et al., 2004b), illustrated in Table 1. In Table 1, the checkmark, , denotes that 

examinees in the sample indicated by the rows have scores on the test indicated by the columns. 

Table 1  

The Design Table for the Nonequivalent Groups With Anchor Test (NEAT) Design 

 X A Y 

P    

Q    

In the framework of the observed-score equating methods for the NEAT design, there are 

three fundamentally different ways of using the information provided by the anchor score, A, to 

equate the scores of X to those of Y. One method uses A as a conditioning variable (or covariate). 

In this method, the conditional distributions of X given A and of Y given A are weighted by a 

distribution for A to estimate the score distributions (or their first two moments) for X and Y in a 

hypothetical target population, T. T is an example of a synthetic population, a concept introduced 

1 



in Braun and Holland (1982), and denoted there as T = wP + (1 – w)Q. The fraction, w, is the 

proportion of T that comes from P. This use of A is reminiscent of poststratification in survey 

research, and we follow von Davier et al. (2004a, 2004b) in referring to methods based on this 

approach as poststratification equating (PSE). 

The PSE methods include both linear and equipercentile methods. Examples of linear 

PSE methods include the Tucker method (Kolen & Brennan, 2004), the Braun-Holland method 

(Braun & Holland, 1982; Kolen & Brennan, 2004) and the PSE linear method of KE (von Davier 

et al., 2004b). The PSE equipercentile methods include both frequency estimation (Kolen & 

Brennan, 2004) and the KE method of equipercentile PSE (von Davier et al., 2004b). 

A second way to use A is as the middle link in a chain of linking relationships—X to A 

and A to Y. We will refer to equating methods based on this approach as chain equating (CE). An 

important difference between PSE and CE is that in the former there is an explicit target 

population, T, whereas in the latter T plays no explicit role. However, von Davier et al. (2004a, 

2004b) showed that in order for CE to produce bona fide observed-score equating functions, 

certain assumptions must hold that involve an implicit synthetic population, T. 

The CE approach also includes both linear and equipercentile methods. Examples of CE 

linear methods include chain linear equating (Angoff, 1971/1984; Livingston, 2004) and the KE 

method of linear CE (von Davier et al., 2004b). The CE equipercentile methods include chain 

equipercentile equating (Angoff, 1971/1984; Livingston, 2004) and the KE method of 

equipercentile CE (von Davier et al., 2004b). 

The third use of A in the NEAT design is the Levine linear method (Kolen & Brennan, 

2004; Levine, 1955). This method uses a classical test theory model for X, Y, and A to estimate 

the means and variances of X and Y on the target population from PSE, T. These four moments 

are sufficient to estimate a linear equating function, defined below in (5). 

In this paper, we propose a general way to create equipercentile versions of the Levine 

linear method using the methods of KE. An approximate version of this approach is illustrated 

with data from a special study. 

Review of the Levine Observed-Score Linear Method 

The linear Levine observed-score equating was originally proposed by Levine (1955) and 

further developed in Kolen and Brennan (2004). 

We assume a classical test theory model for X, Y and A, as shown in (1): 
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X = τX + εX, Y = τY + εY, and A = τA + εA, (1) 

where the error terms, εX, εY, and εA, have zero expected values and are uncorrelated with each 

other and with the true scores, τX, τY, and τA, over any target population of the synthetic form, T = 

wP + (1 – w) Q and for any choice of 0 ≤ w ≤ 1. From (1), the basic equations in (2) follow for 

any T of this form: 

μXT = E(Y| T) = E(τX| T), 

μYT = E(Y| T) = E(τY| T), (2) 

and  

μAT = E(A| T) = E(τA| T). 

A critical assumption of Levine’s method is congenericity, which may be formulated as 

the two population invariance assumptions, LL1 and LL2, below in (3) and (4). 

LL1: For any target population, T, 

τX = aτA + b. (3) 

LL2: For any target population, T, 

τY = cτA + d. (4) 

In LL1 and LL2, the values of the linear parameters, a, b, c, and d, are assumed to be the 

same for any T of the synthetic form, so that the linear relations between the true scores of X and 

Y with A are population invariant. Assumptions LL1 and LL2 imply that for any T, the true 

scores of the three tests are perfectly correlated. This is the classical test theory way of asserting 

that the three tests measure the same thing but not necessarily in the same scale or with the same 

reliability. 

The assumptions, LL1 and LL2, may be used to derive formulas for the means and 

standard deviations of X and Y on T. These then may be used to define the Levine linear-

observed score equating function, LinXY(L)(x) in (6), below. The results are given in Kolen and 

Brennan (2004, p. 122) and make use of the reliability formulas derived by Angoff (1982). 
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Angoff (1982) derived useful estimates for the reliability ratios that make use of data that are 

available in the NEAT design. Angoff’s (1982) estimates take different forms depending on 

whether A is internal or external to the two tests, X and Y. 

In the rest of this paper, we assume that the Levine estimates, μYT(L), μXT(L), σXT(L), and 

σYT(L), of the means and standard deviations of X and Y on T are available. 

In general, any linear equating function is formed from the first two moments of X and Y 

on T as 

LinXY T(x) = μYT + (σYT/σXT)(x – μXT). (5) 

The Levine observed-score linear equating function is obtained from (5) when the first two 

moments of X and Y are estimated by the Levine estimates, as in (6) below: 

LinXY T(L)(x) = μYT(L) + (σYT(L)/σXT(L))(x – μXT(L)). (6) 

Even though it is restricted to be linear, the Levine linear function is often computed for 

comparison purposes with other linear methods. Under some circumstances it is more accurate 

than other linear equating methods (Petersen, Marco, & Stewart, 1982). 

The Relation Between Linear and Equipercentile Equating Functions 

Following von Davier et al. (2004a, 2004b), all observed-score equating functions linking 

X to Y on T, can be regarded as equipercentile equating functions that have the form shown in (7): 

EquiXY T(x) = , (7) 1( ( ))G F x−
T T

where FT(x) and GT(y) are forms of the cumulative distribution functions (cdfs) of X and Y on T, 

and y =  is the inverse function of p = GT(y). Different assumptions about FT(x) and GT(y) 

lead to different versions of EquiXY T(x) and therefore to different observed-score equating 

functions. 

1( )TG p−

Let μXT, μYT, σXT, and σYT denote the means and standard deviations of X and Y on T that 

are computed from FT(x) and GT(y), as in μXT = ( )TxdF x∫ , and so on. The linear equating 

function in (5) that uses the first two moments computed from FT(x) and GT(y) will be said to be 

compatible with EquiXY T(x) in (7). It is the compatible version of LinXY T(x) that appears in 
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Theorem 1 below. We return to the issue of compatible linear and equipercentile equating 

functions in more detail later. Theorem 1 is proved in von Davier et al. (2004b) and connects the 

equipercentile function, EquiXY T(x), in (7) to its compatible linear equating function, LinXY T(x), 

in (5).  

Theorem 1: For any population, T, if FT(x) and GT(y) are continuous cdfs, and F0 and G0 are the 

standardized cdfs that determine the “shapes” of FT(x) and GT(y), that is, both F0 and G0 have 

mean 0 and variance 1 and 

FT(x) = 0
XT

XT

xF μ
σ

⎛ ⎞−
⎜
⎝ ⎠

⎟  and GT(y) = 0
YT

YT

yG μ
σ

⎛ ⎞−
⎜ ⎟
⎝ ⎠

,   (8) 

then 

EquiXY T(x) =  = LinXY T(x) + R(x),   (9) 1( ( ))T TG F x−

where the remainder term, R(x), is equal to σYT
XT

XT

r
σ⎜

⎝ ⎠

x μ⎛ ⎞−
⎟ , (10) 

and r(z) is the function 

r(z) = − z. (11) 1
0 0( ( ))G F z−

When FT(x) and GT(y) have the same shape, it follows that r(z) = 0 in (11) for all z, so 

that the remainder in (17) satisfies R(x) = 0, and thus, EquiXY T(x) = LinXY T(x). 

Theorem 1 can be viewed as a sharpening of the well-known fact that when FT(x) and 

GT(y) have the same shape, the equipercentile equating function is identical to the linear equating 

function. It should be pointed out that the symmetry property of equating is preserved in 

Theorem 1. 

It is important to recognize that, for the various methods used in the NEAT design, it is 

not always true that the means and standard deviations of X and Y used to compute LinXY T(x) are 

the same as those from FT(x) and GT(y) that are used in (7) to form EquiXY T(x). The compatibility 

of a linear and equipercentile equating function depends on both the equating methods and how 

the continuization process for obtaining FT(x) and GT(y) is carried out. 
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The continuization method for KE/PSE insures that the means and standard deviations of 

FT(x) and GT(y) are the same as those of the underlying discrete distributions for any choice of 

bandwidth. In KE, LinXY T(x) corresponds to large bandwidths, whereas EquiXY T(x) corresponds 

to smaller bandwidths that optimize a penalty function (von Davier et al., 2004b). Thus, in 

KE/PSE the four moments underlying LinXY T(x) are the same as those of the FT(x) and GT(y) that 

underlie EquiXY T(x). Hence, for KE/PSE, the linear and equipercentile functions are compatible. 

However, the traditional method of continuization by linear interpolation (Kolen & 

Brennan, 2004) does not reproduce both the mean and variance of the underlying discrete 

distribution. The piece-wise linear continuous cdf that the linear interpolation method produces 

is only guaranteed to reproduce the mean of the discrete distribution that underlies it. The 

variance of the continuized cdf is larger than that of the underlying discrete distribution by 1/12 

(Holland & Thayer, 1989). Moreover, the four moments of X and Y on T that are implicitly used 

by the chain linear or the Tucker linear method are not necessarily the same, nor are they the 

same as those of the continuized cdfs of frequency estimation or the chain equipercentile 

methods. To our knowledge, there is, at best, an incomplete understanding of the compatibility of 

the various linear and equipercentile methods used in practice for the NEAT design. 

The KE/PSE method has all the necessary ingredients for using the result of Theorem 1. 

Because of this, for KE/PSE we may calculate the function r(z) in (11) directly without first 

forming F0 and G0. This computation is summarized in Theorem 2. 

Theorem 2: If EquiXY T(x) and LinXY T(x) in (5) and (7) are compatible, then r(z) in (11) may be 

computed as 

r(z) = 1
σYT

{EquiXY T(μXT + σXT z) – LinXY T(μXT + σXT z)}. (12) 

The proof of Theorem 2 simply solves for r(z) using (9) and (10), so we omit it. 

A General Proposal for Forming Hybrid Equipercentile Equating Functions 

With this preparation, we are in a position to propose a way of obtaining a variety of 

hybrid equipercentile equating functions of the form (7) whose linear part is the linear Levine 

equating function in (6). The idea is to use (9) with the linear equating function being the Levine 

linear function, as shown in (13), below: 
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LinXY T(x) = LinXY T(L)(x) (13) 

and the remainder function, R(x), being computed from an r(z) function found using (12) from 

some other appropriate equating method and the Levine estimates, μXT(L), σXT(L), and σYT(L). 

Following this recipe, our proposed hybrid equipercentile Levine equating function has 

the form in (14): 

EquiXY T(L)(x) = LinXY T(L)(x) + σYT(L)
( )

( )

XT L

XT L

x
r

μ
σ

⎛ ⎞−
⎜⎜
⎝ ⎠

⎟⎟ . (14) 

Equation (14) preserves the symmetry property that is required by equating functions (Dorans & 

Holland, 2000). 

Using (12), we may express EquiXY T(L) in terms of the Levine linear function, LinXY T(L), 

and the other two equating functions that were used as well. This is summarized in (15), 

EquiXY T(L)(x) = LinXY T(L)(x) + 

σ

σ
YT(L)

YT

{EquiXY T(μXT + σ
σ

XT

XT(L)

(x − μXT(L)) – LinXY T(μXT + σ
σ

XT

XT(L)

(x − μXT(L)))}. (15) 

The argument of both LinXY T and EquiXY T in (15), 

μXT + σ
σ

XT

XT(L)

(x − μXT(L)), 

has the form of a linear equating function that links the Levine linear scale to that of the linear 

scale based on the moments, μXT, μYT, σXT, and σYT. 

The Hybrid PSE-Levine Equipercentile Equating Function 

In the KE version of PSE, the anchor test is used as a covariate on which the score 

probabilities for X and Y are poststratified and reweighted to obtain estimated score probabilities 

on T—{rjT} for X and {skT} for Y. These are then continuized to produce two cdfs, FT(PSE)(x) and 

GT(PSE)(y). As mentioned earlier, because of the way KE continuization works, each of the two 

continuous cdfs has the same means and standard deviations as the corresponding discrete score 
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probability distributions, {rjT} or {skT}. Thus, we can simply use {rjT} and {skT} to obtain 

μXT(PSE), μYT(PSE), σXT(PSE), and σYT(PSE), via the usual definitions, 

μXT(PSE) = j j
j

x r∑ T , μYT(PSE) = k k
k

y s∑ T , (16) 

2 2

j
( )XT PSEσ  = ( )( )j XT PSE jTx rμ−∑ 2

( )YT PSEσ 2) T,  = ( )( k YT PSE k
k

y sμ−∑ . (17) 

Thus, for the KE version of PSE, forming integrals like ( ) ( )XT PSExdF x∫  to compute μXT(PSE) and 

so on is unnecessary. 

In order to use (15), it is necessary to have a way of calculating the KE/PSE functions, 

EquiXY T(PSE)(x) and LinXY T(PSE)(x), for any value of x, not at just the scores values, {xj}. We 

assume that this calculation is possible, though it may require modification of existing software. 

Then, values of μXT(PSE) and σXT(PSE) are used as the values of μXT, σXT in (15) to compute the 

linear transformation 

x* = μXT(PSE) + ( )

( )

XT PSE

XT L

σ
σ

(x − μXT(L)). (18) 

In (18), x is a value at which we want to compute EquiXY T(L)(x) defined in (14) or (15). Finally, 

σYT(PSE) is used as σYT to compute the nonlinear remainder term in (15) at the transformed value, 

x*, as shown in (19), 

( )

( )

YT L

YT PSE

σ
σ

{EquiXY T(PSE)(x*) – LinXY T(PSE)(x*)}, (19) 

and the result in (19) is then added to the Levine linear function, LinXY T(L)(x), to compute EquiXY 

T(L)(x), as shown in (20), 

EquiXY T(L)(x) = LinXY T(L)(x) + ( )

( )

YT L

YT PSE

σ
σ

{EquiXY T(PSE)(x*) – LinXY T(PSE)(x*)}. (20) 

The result in (20) is the PSE-Levine equipercentile equating function. 
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If the means and variances on T derived under the Levine assumptions are the same as the 

means and variances on T derived under the PSE assumptions, then (18) simplifies to the identity 

function, x* = x, and equation (20) reduces to 

EquiXY T(L)(x) = LinXY T(L)(x) + {EquiXY T(PSE)(x) – LinXY T(PSE)(x)}. (21) 

It is an empirical question if such a simplification is realistic, but (21) only requires the 

computation of the difference between the two KE/PSE functions, 

EquiXY T(PSE)(x) and LinXY T(PSE)(x). 

Later in this paper we illustrate the ideas behind EquiXY T(L)(x) using (21) as an approximate PSE-

Levine equipercentile equating function. 

A possibly more realistic approximation is to assume that the Levine and PSE variance 

estimates are identical, but not their estimates of the means. This leads to the following 

alternative approximation to the PSE-Levine equipercentile function: 

EquiXY T(L)(x) = LinXY T(L)(x) +  

{EquiXY T(PSE)(x + δ) – LinXY T(PSE)(x + δ)}, (22) 

where, in (22) δ is the difference between the PSE and Levine estimates of the mean of X in T, δ 

= μXT(PSE) − μXT(L). 

An Illustrative Example 

Data 

The data we use to illustrate our approach come from von Davier et al. (2006). Two 

unique 44-item pseudo-test scores, X and Y, and one 24-item, external-anchor test score, A, were 

carefully constructed from the item responses to a longer 120-item test. The 120-item test had 

been taken by two samples of examinees from two populations that differed in performance on 

this test. The mean total scores of the examinees taking the test at these two administrations, P 

and Q, differed by approximately one fourth of a standard deviation on the original 120-item test 

(see Table 2). 
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Table 2  

Comparison of the Examinees at the Two Administrations on the Initial 120-Item Test 

Administration P Q 

Number of examinees 6,168 4,235 

Mean  82.33 86.16 

SD  16.04 14.19 

The pseudo-tests, X and Y, were constructed in such a way that they were parallel in 

content but differed considerably in difficulty. On the combined group, the mean difference 

between X and Y was about 140% of the average standard deviation (see Table 3). When the test 

forms differ significantly in difficulty, the results from different equating methods also differ 

(von Davier et al., 2004a); hence, this design provides a good framework for investigating the 

differences in the equating methods and their assumptions. One might decide to use the term 

linking instead of equating in a practical situation, where the test forms exhibit massive 

differences in difficulty. 

Table 3  

Comparison of the Examinees at the Two Administrations on the Pseudo-Tests 

Populations  X Y 

Examinees in P Mean 36.4 28.0 

(n = 4,237) SD 4.8 6.3 

Examinees in Q Mean 35.1 26.6 

(n = 6,168) SD 5.7 6.7 

Combined group, T Mean 35.6 27.2 

(n = 10,405) SD 5.4 6.6 

In addition, the anchor test was designed to be parallel in content but targeted at a 

difficulty level between X and Y. The reliabilities of X and Y were about 0.8; their correlations 

with the external anchor, A, were 0.78 in P and 0.76 in Q. The design table for the pseudo-test 

data is given in Table 4. 
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Table 4 

The Design Table for the Pseudo-Test Data 

 X A Y 

P    

Q    

By ignoring the data for X in Q and Y in P, the scores from the pseudo-test data may be 

regarded as the NEAT design in Table 1, where the combined sample is regarded as from the 

synthetic population, T = wP + (1 – w) Q, with w proportional to the size of the sample from P. 

The data for X in Q and Y in P were used to augment this NEAT design to provide a criterion 

equating design that is not usually available. From Table 4 for the pseudo-test data, X and Y are 

seen to form a single-group (SG) design on T, the combined group. That is, every one in T has 

scores for both X and Y. This SG design provides a criterion equating that the NEAT design 

attempts to approximate. We used the full data set to estimate the KE SG design equipercentile 

function and treated it as the criterion equating for our analyses. Because this is not a simulation, 

“truth” is not known. Instead this paper uses a criterion equating that was constructed on the 

same population T as the equating functions of interest and through similar steps (presmoothing 

using loglinear models, continuization using linear interpolation) as the usual observed-score 

equating methods for the NEAT design. The equipercentile function was chosen because the two 

tests differ significantly in the shape of the distributions. 

All of the equatings went from X to Y so that X plays the role of the new form and Y is the 

old form. The presmoothing of the data was accomplished by fitting appropriate loglinear models 

to the discrete score probability distributions (Holland & Thayer, 2000), as discussed in von 

Davier et al. (2006), who examined these data in detail. 

The results of von Davier et al. (2006) indicated that an equipercentile version of the 

Levine observed-score equating function might be an appropriate equating function for these 

data. They found that the Levine linear function well approximated the SG linear criterion 

function. Table 5 shows the differences between the linear anchor equatings and the linear 

equating function in the SG design (considered the equating criterion for the linear equatings). 

More precisely, Table 5 shows (a) the maximum, minimum, and averages of these differences 

and (b) the root mean expected error (RMSE) of these differences. The RMSE, or error, is 
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2RMSE = dd sd+ 2 , where d  is the mean of the differences of the equated scores (d = ai - 

bi, where ai and bi denote the equated scores of the score xi by two different methods, 

respectively) and sd is the standard deviation of these differences.  

Table 5 

Summary Measures of Differences Between Linear KE/PSE, Tucker, Chain Linear, and 

Levine and the Criterion, SG Linear Equating 

Summary KE/PSE linear-
criterion 

Tucker- 
criterion 

Chain linear-
criterion 

Levine- 
criterion 

Mean difference  0.727  1.012  0.098 –0.152 

SD difference  0.493  0.770  0.241  0.086 

Max difference  1.564  2.302  0.501 –0.008 

Min difference –0.089 –0.279 –0.306 –0.296 

RMSD difference  0.879  1.272  0.260  0.175 

Note. KE = kernel equating, PSE = poststratification equating, RMSD = root mean squared 

deviation. 

Figure 1 shows the difference between the Levine linear function and the SG linear 

(criterion) equating function. It indicates that the Levine function is a close approximation to the 

criterion linear equating based on the combined group.  

However, because of the extreme difference in the difficulty of X and Y, a linear equating 

function is not satisfactory. This is seen in Figure 2, which displays the criterion equipercentile 

equating function that is decidedly not linear. Table 6 (von Davier et al., 2006) summarizes the 

differences from the nonlinear criterion of the anchor equating functions investigated in von 

Davier et al. (2006) at various score points.   

Results 

Due to software limitations at the time of this writing, we will illustrate only the 

approximate PSE-Levine equipercentile function that is given in (21) rather than the complete 

version of the PSE-Levine equipercentile function given by (18) and (19). Figure 3 graphs the 

three ingredients to (21)—(a) the Levine linear, (b) the KE/PSE equipercentile, and the (c) 

KE/PSE linear equating functions. 
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Figure 1. Graph of the difference between the Levine linear and the criterion single-group 

(SG) linear equating functions for the pseudo-test data.  
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Figure 2. Graph of the criterion single-group (SG) kernel equating (KE) equipercentile 

equating function for the pseudo-test data. 
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Table 6 

Difference Between Each Anchor Equating and Criterion SG Nonlinear Equating for 

Selected Raw Scores 

Raw score on Form X 
Difference from criterion equating  

25 30 35 40 

Chain linear –1.88  0.42   1.26 –0.68 

KE/CE, large bandwidth –1.57  0.61   1.33 –0.71 

Tucker –1.08  1.01   1.65 –0.49 

KE/PSE, large bandwidth –1.31  0.89   1.64 –0.39 

Levine observed-score –2.09  0.26   1.16 –0.71 

Chain equipercentile –0.17 –0.03 –0.06 –0.33 

KE/CE, optimal bandwidth –0.19 –0.03 –0.06 –0.32 

Frequency estimation equipercentile  0.38  0.43   0.36 –0.07 

KE/PSE, optimal bandwidth  0.35  0.44   0.37 –0.07 

Note. KE = kernel equating, CE = chain equating, PSE = poststratification equating, SG = single 

group. 

Again, it is clear from Figure 3 that the linear functions are not adequate to adjust for the 

extreme differences between the two pseudo- tests, X and Y, except possibly in the X-score range 

of about 20–40.  

Figure 4 graphs both the approximate PSE-Levine equipercentile function using (21) and 

the criterion KE equipercentile SG equating function. They are remarkably close. 

The difference between the two equating functions in Figure 4 is plotted in Figure 5. The largest 

differences are at the low end of the scale, where the approximate PSE-Levine equipercentile 

function underestimates the criterion equating function. The standard errors of the linear 

equating functions range from 0.53 (at Score 0) to 0.08 (from Scores 35–39) and show a similar 

pattern across the score range for all linear methods (see von Davier et al., 2006, p. 13). 
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Figure 3. Graphs of the Levine linear, KE/PSE equipercentile, and KE/PSE linear equating 

functions.  

Note. KE = kernel equating; PSE = poststratification equating.  

0

20

40

60

0 15 30

X-score

C
on

ve
rt

ed
 S

co
re

45

 

Figure 4. Graph of the approximate PSE-Levine equipercentile function from (28) and the 

criterion kernel equating (KE) equipercentile single-group (SG) function.  

Note. PSE = poststratification equating. 
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Figure 5. Graph of the difference between the approximate PSE-Levine equipercentile 

equating function and the criterion equating function in Figure 4.  

Note. PSE = poststratification equating. 

Discussion 

We propose a general approach to creating a hybrid PSE-Levine equipercentile equating 

function that preserves the property of symmetry required of equating functions. The new 

function is based on a very basic decomposition of any equipercentile equating function into a 

linear and nonlinear part. We then suggest a hybrid that takes its linear part from the Levine 

linear function and its nonlinear part from some other equating method that includes compatible 

forms of equipercentile and linear functions. To the extent that the congeneric assumptions of the 

linear Levine function are satisfied and that the nonlinear part of the other equipercentile 

function is satisfactory, we would expect our proposal to be a useful addition to the methods for 

equating in the NEAT design. 

We believe that the close agreement between the criterion equipercentile equating and the 

approximate version of the Levine equipercentile function found by using the KE/PSE 

equipercentile and linear functions suggests that it will be fruitful to pursue the approach 

indicated in this paper. Moreover, we think that the basic principle of KE, that the continuized 
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cdfs should preserve at least the first two moments of the underlying discrete distribution, found 

a serious use in this application. Whereas it is the curvilinearity of equipercentile equating 

functions that usually gets the attention, the influence of the underlying means and variances 

should not be forgotten. These factors both locate and scale any equipercentile function and can 

have major effects on it. 

Equation (15) allows for the possibility of a variety of different ways to combine the 

linear and nonlinear parts of different types of equating functions for the NEAT design. So far, 

we have explored only the combination of KE/PSE and the Levine linear method, but others are 

possible as well. For example, KE/CE may provide an alternative to KE/PSE in this regard. 

However, at this writing we are unclear whether the KE/CE equipercentile and KE/CE linear 

functions share the same underlying first two moments on a target population and are, therefore, 

compatible in the sense used here. This is a possible area for future research. 

Our approach, especially (19), shows how important it is for equating software to allow 

for evaluating equating functions at values that are not just integer score values. Finally, we 

believe that investigations of the shapes of the r(z) functions in (11) can be used to shed light on 

the differences between practical equipercentile equating methods. Computing and comparing 

the r(z) functions for a variety of equipercentile methods appears to be a useful area for future 

research. 
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